Comprehension of sentences with ambiguous words is predicted by language-specific and domain-general abilities

Fritz Peters, Lucy J MacGregor, Rebecca A Gilbert, Matthew H Davis

1University of Cambridge 2University College London

Background

Understanding semantically ambiguous words in context requires knowledge of, access to, and selection of the appropriate word meaning.

Previous research[1]:
- showed a positive correlation between semantic ambiguity resolution success and vocabulary but not non-verbal IQ measures.
- was limited by sample size and the ability measures taken.

Are individual differences in semantic ambiguity resolution success predicted by language-specific and/or domain-general abilities?

Methods

In a behavioural online study (jsPsych; Prolific) 67 volunteers (19-59 years, native British English) performed tasks to measure 3 types of abilities:

1. Ambiguity resolution ability
 Meaning Definitions Task

 122 sentences with ambiguous words resolving to subordinate meaning[2]
 - “Sally worried that the **ball** was going to be too **crowded**”
 - “A party with dancing"

 10 sentences with unambiguous control words
 - “Susie feared that the **pub** was going to be too **expensive”**
 - “A place to drink"

 Accuracy: Mean (SD) [range] = .84 (.12) [.52, .99]; split-half reliability, r=.82, p < .001

2. Language-specific ability
 i) Mill Hill Vocabulary Test
 1. **Rage**
 - crease
 - love
 - invite
 - anger
 - rain
 - hoist

 Accuracy: Mean (SD) [range] = .74 (12) [.52, .99]; split-half reliability, r=.82, p < .001

 ii) Spot the Word Test
 - kitchen
 - harrick
 - puma
 - lapless
 - plorinum
 - levyly
 - culicle
 - andrinand
 - flonty
 - xylophone

 Accuracy: Mean (SD) [range] = .72 (14) [.52, .99]

3. Domain-general ability
 i) Series Completion
 ii) Odd-one-out

 Accuracy: Mean (SD) [range] = .69 (.15) [.52, .99]

 iii) Matrices
 iv) Topology

 Accuracy: Mean (SD) [range] = .64 (.27) [.01, .82]

Results

Principal Component Analysis (Varimax-rotated)
A 2-factor solution accounts for 71% of variance (RC1=43%, RC2=28%)

<table>
<thead>
<tr>
<th>Factor</th>
<th>RC1</th>
<th>RC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattell Test i</td>
<td>.850</td>
<td></td>
</tr>
<tr>
<td>Cattell Test ii</td>
<td>.707</td>
<td></td>
</tr>
<tr>
<td>Cattell Test iii</td>
<td>.817</td>
<td></td>
</tr>
<tr>
<td>Cattell Test iv</td>
<td>.749</td>
<td></td>
</tr>
<tr>
<td>Mill Hill</td>
<td>.923</td>
<td></td>
</tr>
<tr>
<td>Spot the Word</td>
<td>.822</td>
<td></td>
</tr>
<tr>
<td>Loadings <.4 not shown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age has opposite correlations with domain-general & language-specific abilities

Multiple Linear Regression
Meaning definition task accuracy is predicted by domain-general and language-specific abilities

| Estimate | Std. Error | t value | Pr (>|t|) |
|----------|------------|---------|----------|
| (Intercept) | .8401 | .0117 | 71.545 | <2e-16 *** |
| Gen. abilities | .585 | .0121 | 4.831 | 9.52e-06 *** |
| Lang. abilities | .0573 | .0121 | 4.722 | 1.41e-05 *** |
| Age | .0125 | .0122 | 1.023 | 0.310 |
| Gen. abilities | .0019 | .0105 | 0.189 | 0.851 |
| * Age | Lang. abilities | .0126 | .0092 | -1.357 | 0.180 |
| * Age | | | | |

Conclusions

Comprehension of spoken sentences with ambiguous words is predicted by language-specific and domain-general abilities

- An increase in age is associated with a decrease in domain-general abilities and an increase in language-specific abilities.
- Age does not predict semantic ambiguity resolution success.

References