Altered Gravity Influences Responses to Environmental Stimuli

Iqra Arshad & Elisa R. Ferrè
Department of Psychology, Royal Holloway University of London, Egham, UK

Questions? Please get in touch!
Iqra.Arshad.2016@live.rhul.ac.uk

References:

Background
Gravity is always present, it is stable and unchanging.
Humans have evolved in a “1 g” gravitational environment. Gravity may play a role in regulating behaviour, perception and cognition. Responding to changes in the environment is crucial for survival. Alterations in gravity may impact response behaviour, potentially leading to harm.

The VESTIBULAR SYSTEM senses the orientation of the head relative to gravity. A widespread network of cortical and subcortical areas in the human brain receives signals from the vestibular organs, including the Temporo-Parietal Junction, Inferior Parietal Lobule, Anterior Cingulate Cortex, and Prefrontal Cortex.

To investigate whether alterations of vestibular-gravitational signalling modulate adaptive responding in controlled lab-settings

A proxy for adapting responding

The ODDBALL TASK has been widely used as a test responding. Participants were asked to respond to changes in auditory tone. A train of beep sounds was presented, in which 80% of trials were STANDARDS (500Hz) and 20% TARGET (1000Hz) stimuli. Participants were asked to respond as quickly as possible to TARGET sounds.

Aim
To investigate whether alterations of vestibular-gravitational signalling modulate adaptive responding in controlled lab-settings

Aim
To investigate whether alterations of vestibular-gravitational signalling modulate adaptive responding in controlled lab-settings

1g TERRESTRIAL GRAVITY

Non-Terrestrial VR-simulated gravity INCREASED reaction times in the Oddball Task

Both VESTIBULAR and VISUAL alterations in gravity increase reaction times to environmental events. Gravity may influence the brain’s ability to adapt to changes in the external environment.

References: