Introduction

Humans can rapidly detect faces in their visual field, despite their variety. A cognitive template for face detection must therefore be able to accommodate face variability. In this study, we investigate whether a statistical average of previously encountered faces could form a generic detection template. The visual system uses statistical summaries, such as averages, to represent sets of objects, including faces (de Fockert & Wolfenstein, 2009). Averages capture commonalities across faces, both within a single identity (Burton et al., 2005) and across multiple identities (Sutherland et al., 2013). Yet an effective template would also need to be stable (see Jenkins & Burton, 2011). Here we manipulate the number and variability of faces contributing to an average to determine when stability is reached.

Methods

- **Participants:** Total N = 112 (75 females). Experiment 1 N = 32, Experiment 2, N = 40, Experiment 3 N = 40.
- **Face stimuli:** 420 ambient faces from an online generator. Twelve categories: gender, age and race.
- **Averages:** 288 average faces from 120 source faces per condition. 12 set sizes (2, 4, 6, 8, ..., 18, 20, 30, 40).
- **Category number:** Six conditions: two single categories, one 2-category, 4-category, 6-category and 12-category.
- **Perceptual stability:** Participants judged the similarity of average pairs via a ‘same’/’different’ 2AFC task. Face pairs were constructed from an equal number of randomly selected, non-overlapping face identities.
- **Image stability:** Principal Components Analysis (PCA) used to estimate the variability of face images at each set size, by calculating the standard deviation across eigenvectors for randomly generated sets of averages.

Results

Perceptual stability

- **Experiment 1:** A 6 (Category Number) x 12 (Set Size) ANOVA. Effects of Category Number, F(5,155) = 70.91, p < .001, Set Size, F(11,341) = 294.18, p < .001, and an interaction, F(55,1705) = 5.67, p < .001.
- Matches increased with set size number. But few differences after SS10, stable from SS20 (dashed lines = n.s.).
- Matches decreased with category number, and higher category numbers (e.g., 4C, 6C, 12C) stabilised later.
- Differences between category numbers persisted even at the highest set sizes.
- **Experiment 2:** Direct replication of Experiment 1 with online participants (due to Covid-19).
- **Experiment 3:** Category conditions were presented in separate counterbalanced blocks, rather than intermixed, as high category number trials may appear more dissimilar in the context of low category number trials.
- Experiment 3 found effects of Category Number, F(5,195) = 10.27, p < .001, Set Size, F(11,429) = 250.89, p < .001, and an interaction, F(55,2145) = 5.10, p < .001. But found a smaller effect size for category number (ŋ²p = .21) compared to experiment 1 (ŋ²p = .70), and convergence across conditions from SS20.

Image stability

- Effects of Category Number, F(5,155) = 99.24, p < .001, Set Size, F(11,341) = 3637.23, p < .001, and an interaction, F(55,1705) = 3.11, p < .001.
- Declines in variance with set size number, then levels off.
- Variance increased with category number, but differences only consistent for 1CM and 12C.

Conclusions

- Cross-identity face averages reach stability surprisingly quickly, after being constructed from just 20 to 30 distinct identities.
- This is evident from both subjects’ similarity judgements and the PCA.
- Stability is reached regardless of whether averages are constructed from single or multiple face categories.
- A cognitive face detection template based on averaging could form rapidly, after exposure to just a small number of faces.